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Abstract The general one-dimensional potential energy function, including cen-
trifugal distortion, for a diatomic molecule is morphed with a series of Morse-like
functions for each of the rotational quantum numbers J . For each of the morphed
potential, explicit formulae for the matrix elements of the complete energy matrix,
on the basis of the solutions of the one-dimensional harmonic oscillator, are given
and these may be used in connection with the variational procedure to solve the
corresponding vibrational Schrödinger equation. From the set of vibrational levels
{EvJ}, J = 0, 1, 2, . . . the ro-vibrational transitions can be deduced.

Keywords Morphing · Morse-like potential · Matrix elements

1 Introduction

In this work, we present closed formulae for the computation of energy matrix ele-
ments, to be used in a variational approach to solve the vibrational Schrödinger equa-
tion of a rotating oscillator (i.e. a diatomic molecule). There, the internuclear distance
X varies subjected to the centrifugal distortion and the potential energy V (x) is the gen-
eral (Morse-shaped) molecular potential, either of experimental nature or theoretically
calculated from some ab initio method, for a non-rotating molecule, which in general
cannot be represented by a single Morse function but instead, by a rather complex
analytical curve which nevertheless resembles the Morse function. The Schrödinger
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Fig. 1 The Morse-like potential energy curve V(ξ ) (solid) and the harmonic potential H(ξ ) (dotted)

equation for a distorted rotating oscillator is of the form:

{
− h̄2

2μ
∇2 + Vef f (x)

}
Ψ (x) = E Ψ (x) (1)

where V0(x) is the electronic energy of a non-rotating molecule and the effective
potential

Vef f = V 0(x) + h̄2 J (J + 1)

2μ x2 (2)

changes with increasing values of the rotational quantum number J .
The basis set, chosen for the variational procedure, consists of a complete set

of eigenfunctions of the harmonic oscillator, centered at the origin. Together with
choosing the basis set, and for generality purposes, it is convenient make Eq. (1)
dimensionless. In order to do this, we define the harmonic potential, which will give
raise to the basis set, by computing the curvature K of V 0(x) (i.e. the second derivative)
at the origin and rewrite both terms in the potential energy function of Eq. (2) in terms

of the dimensionless variable ξ = √
αx , where α =

√
κμ

h̄ and μ being the reduced
mass. Both potentials have the same curvature at the origin as shown in Fig. 1.

The most convenient variational basis set, and simpler to treat, is then the set of
eigenfunctions of the dimensionless harmonic oscillator centered at the origin, these
functions are:

�n(ξ) =
√

1√
π n! 2n

Hn(ξ) e
−ξ2

2 n = 0, 1, 2, . . . (3)
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or in terms of the original variable

�n(x) =
√

1

n! 2n

√
α

π
Hn(x) e

−αx2
2 n = 0, 1, 2, . . . (4)

There, energies are measured in units of h̄ω = h̄
√

κ
μ

Equation (1) now takes the dimensionless form:

{
−1

2
∇2

ξ + V ∗
e f f (ξ)

}
�(ξ) = E ∗ �(ξ)

For simplicity and without loss of generality, we assume the minimum of the potential
energy function located at ξ = 0, this condition can always be accomplished by a
simple change in variable. Although the minimum of V ∗

e f f (ξ) is shifted with increasing
values of the rotational quantum number J, its position is completely irrelevant for the
determination of vibrational energy levels. This is not the case for the value of energy
at the minimum.

2 Morphed potentials

The description of potential energy surfaces (PES) for a diatomic molecule has been
customarily given by the two-parameter Morse Potential. Even though for which
there is an analytical solution of Eq. (1), it does not generally fit the experimental or
ab-initio PES. A much better description is obtained by a generalized exponential
function [1–4] centered at the origin such as:

V (r) =
k=m∑
k=2

Ak
(
1 − e−αr )k

(5a)

which can be “morphed” to almost exactly reproduce the experimental or theoretical
PES. We find in the literature, that the value of m, the number of functions used for
morphing, does not exceed 4 or 5 and the method of solving Eq. (1) is the approximate
reduced potential method (RPC)[4]. In this work, we have developed the necessary
methodology to use this expansion with larger values of m (10 or more depending
of the need) and then solving Eq. (1) variationally over a very large basis set of N
(N ≥ 100) of Harmonic Oscillator (HO) wave functions, which were defined above.

Figure 2 depicts an example of the morphing of an experimental potential energy
curve as a function of the internuclear distance for a diatomic molecule. The exper-
imental points were computed using an ab initio method with the sole purpose of
generating the Morse-shaped curve. The solid line in that figure, represents the mor-
phed potential computed using Eq. (5a) with m = 8.

The effective potential, generated for different rotational quantum numbers J, is then
morphed by mean of an expansion of an adequate number of Morse-like exponential
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Fig. 2 Experimental potential energy curve (circles) versus internuclear distance for a diatomic molecule.
The solid line corresponds to the morphed potential as obtained with Eq. (5a)

functions, i.e. a least square fitting of the type [13]:

V ∗
e f f (ξ) =

k=m∑
k=0

Ak
(
1 − e−αξ

)k
(5b)

where Ak and α are optimization parameters. Upon simplification Eq. (5b) becomes

V ∗
e f f (ξ) =

k=m∑
k=0

⎧⎨
⎩

j=m−k∑
j=0

(
k + j
j

)
Ak+ j

⎫⎬
⎭ e−αkξ (6)

3 Energy matrix elements

In view of Eq. (6), the scaled dimensionless molecular potential, we have derived the
necessary expressions to analytically compute the Hamiltonian matrix elements within
the basis of the harmonic oscillator eigenfunctions of Eq. (3). These are as follows:

3.1 Kinetic energy

To evaluate the matrix elements for the kinetic energy operator T̂ , we make use of the
Hermite differential equation [7–9] in the form

d2

dξ2

(
Hn(ξ) e

−ξ2

2

)
+ (2n − ξ2 + 1)Hn(ξ) e

−ξ2

2 = 0 (7)

and due to the hermiticity of T̂ , we find:
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〈
�k(ξ)

∣∣∣∣−1

2

d2

dξ2

∣∣∣∣�l(ξ)

〉
= −1

2
√

πl!2l

{〈
Hk(ξ) e

−ξ2

2

∣∣∣ ξ2
∣∣∣ Hl(ξ) e

−ξ2

2

〉
−(2l+1)δkl

}

(8)

The integrals in the right hand side of Eq. (8) are already known [8–12]

〈
Hk(ξ) e

−ξ2

2

∣∣∣ ξ2
∣∣∣ Hl(ξ) e

−ξ2

2

〉
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

√
l(l − 1) l = k − 2

1
2 (2l + 1) l = k

1
2

√
(l + 1)(l + 2) l = k + 2

0 otherwise

(9)

nevertheless, we have derived [13] a more simple and convenient way to compute
these matrix elements

〈
Hk (ξ) e

−ξ2
2

∣∣∣∣∣
d2

dξ2

∣∣∣∣∣ Hl (ξ) e
−ξ2

2

〉
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2 (2k+1) l = k

√√√√
(

M
2

)

2 l = k ± 2 M = biggest between (k, l)

0 Otherwise

(10)

3.2 Potential energy

From Eq. (6), it is seen that the potential energy operator can be written as a series of
exponential in terms in the form

V ∗
e f f (ξ) =

r=m∑
r=0

Br e−αrξ (11)

where the Br coefficients are merely constants. Then, the matrix elements Vkl of the
potential energy operator is a sum of terms of the type:

Vkl =
r=m∑
r=0

Br
1√

πk!l!2k+l

∫ +∞

−∞
Hk(ξ) e−(

αrξ+ξ2
)
Hl(ξ)

dξ =
r=m∑
r=0

Br
〈
k
∣∣e−αrξ

∣∣ l
〉

(12)
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In Eq. (12), for simplicity we have dropped the dimensionless superscript (*) and
“effective” labels in the potential energy matrix elements. To evaluate these integrals
we have derived the following closed expressions:

3.3 Diagonal terms

These terms are simpler to evaluate and reduce to:

〈
k
∣∣e−aξ

∣∣ k
〉 = e

a2
4

j=k∑
j=0

(
k
j

)

2 j j ! a2 j (13)

3.4 Off-diagonal terms

For k < l we have:

〈
k
∣∣∣e−aξ

∣∣∣ l
〉
= e

a2
4√

2k k!
√

2l l!
j=k∑
j=0

⎡
⎢⎣(−a)|l−k|+2 j

(
k
j

)
2k− j ×

⎧⎪⎨
⎪⎩

∏m=l
m=(l−k+ j+1) m i f j �= k

1 i f j = k

⎤
⎥⎦

(14)

For l < k reverse the indexes.
These integrals are readily programmed in a computer code. The next step is the

solution of the secular equation |Hkl − Eδkl | = 0 since the basis set is already ortho-
normal.

3.5 Ro-vibrational levels

To obtain ro-vibrational levels, we solve variationally Eq. (1) for a parametric value of
the rotational quantum number J and a set {En} (n = 0, 1, 2, . . .) of energy levels is
obtained .Repeating this procedure for J = 0, 1, 2, . . ., a manifold of ro-vibrational
energy levels, for {En}J is obtained.

From this set of values, we have shown in a previous work [5,6] that the transitions
energies, between ro-vibrational energy levels, can then be computed by subtracting
the appropriate energy levels in agreement with the selection rules 
J = 0,±1 and

n = ±1.
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